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Review Article

Ecological Therapy for Cancer:
Defining Tumors Using an
Ecosystem Paradigm Suggests

New Opportunities for Novel
Cancer Treatments'

Abstract

We propose that there is an opportunity to devise new cancer therapies based on the recognition that tumors have
properties of ecological systems. Traditionally, localized treatment has targeted the cancer cells directly by removing
them (surgery) or killing them (chemotherapy and radiation). These modes of therapy have not always been effective
because many tumors recur after these therapies, either because not all of the cells are killed (local recurrence) or
because the cancer cells had already escaped the primary tumor environment (distant recurrence). There has
been an increasing recognition that the tumor microenvironment contains host noncancer cells in addition to cancer
cells, interacting in a dynamic fashion over time. The cancer cells compete and/or cooperate with nontumor cells,
and the cancer cells may compete and/or cooperate with each other. It has been demonstrated that these inter-
actions can alter the genotype and phenotype of the host cells as well as the cancer cells. The interaction of these
cancer and host cells to remodel the normal host organ microenvironment may best be conceptualized as an evolv-
ing ecosystem. In classic terms, an ecosystem describes the physical and biological components of an environment
in relation to each other as a unit. Here, we review some properties of tumor microenvironments and ecological
systems and indicate similarities between them. We propose that describing tumors as ecological systems defines
new opportunities for novel cancer therapies and use the development of prostate cancer metastases as an exam-
ple. We refer to this as “ecological therapy” for cancer.
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Tumors as Ecological Systems
Since the work of Cairns and Nowell in the 1970s, cancer has been
described as a process that can be understood in terms of darwinian
evolution [1-4]. Tumor cell heterogeneity is the result of competition
between various clones of cancer cells that act as competing species
for resources in the tumor microenvironment [2-6]. It is generally ac-
cepted that cancers evolve by darwinian principles (Figure 1) [5-9].
These principles include clonal proliferation, mutational and epi-
genetic changes within the clonal population resulting in genetic di-
versity, and selection pressures such as lack of nutrients leading to
proliferation of subclones [5-9]. This knowledge, however, has not re-
sulted in changes in treatment paradigms for cancer therapy. Placing
cancer cell clonal evolution within the context of its environment pro-
vides a novel paradigm that can lead to new therapeutic interventions.
Cancer has been considered as an emergent property of a complex
adaptive system [10—12]. Similarly, the emergent property of a classic

ecosystem is the collective behavior of its constituent parts. In the
1930s, the term ecosystem was coined by Clapham and then popular-
ized and put into print by Tansley to describe the physical and bio-

logical components of an environment considered in relation to each

Address all correspondence to: Kenneth J. Pienta, MD, 7308 CCC, 1500 E. Medical
Center Drive, Ann Arbor, MI 48109. E-mail: kpienta@umich.edu

'K.J. Pienta is supported by a National Institutes of Health (NTH) grant CA093900,
an American Cancer Society Clinical Research Professorship, NIH Specialized Pro-
gram of Research Excellence (SPORE) in prostate cancer grant P50 CAG9568, Cancer
Center support grant P30 CA 46592, SouthWest Oncology Group grant CA32102,
the Prostate Cancer Foundation, a Ralph Wilson Medical Research Foundation grant,
and a Wallace H. Coulter Foundation Translational Partners Seed grant. R. Axelrod is
supported by the University of Michigan’s LS&A Enrichment Fund. D.E. Axelrod is
supported by NIH grant CA113004.

Received 21 August 2008; Revised 16 September 2008; Accepted 18 September 2008

Copyright © 2008 Neoplasia Press, Inc. All rights reserved 1944-7124/08/$25.00
DOI 10.1593/tl0.08178



Translational Oncology Vol. 1, No. 4, 2008

A

Normal

Mutation 1

Mutations 1 + 2

Defining Tumors Using an Ecosystem Paradigm  Pienta et al. 159

Mutations 1+ 2 + 3

Bottleneck
Bottleneck
B Mutation A

-
X ¥ Growth Factor A

-

-~
E ?ﬁ: > Growth Factor B

“—a

Mutation B

Figure 1. Darwinian evolution and cancer. Cancers evolve by darwinian principles that include clonal proliferation, mutational changes
within the clonal population resulting in genetic diversity, and selection pressures leading to proliferation of subclones that bridge bottle-
necks such as lack of nutrients and space limitations. (A) In the traditional view of tumor progression, there is competition between
genetically unstable, partially transformed, proliferating cells. The cells compete for limited oxygen, essential nutrients, and growth
factors, and therefore, many die. Eventually, one cell accumulates sufficient mutations to express all of the functions required for a
clone of fully malignant cells to emerge as a successful species occupying an environmental niche. This founder cell can be the result
of selective pressures as indicated by the bottlenecks or the result of intrinsic genetic instability leading to a full complement of muta-
tions that are required for full malignant potential. The bottlenecks indicate where a new dominant cell type becomes apparent. (B) In
addition, we have hypothesized a tumor progression model based on the theory of cooperation. Genetically unstable partially trans-
formed cells proliferate and yield different mutant cell types. The different cell types cooperate with each other, enabling them to survive
and proliferate. The concept of cooperation among partially transformed cells is added to the traditional view of tumor progression. As in
the traditional view, eventually one cell may accumulate sufficient mutations to express all of the functions required for a clone of fully

malignant cells to emerge as the dominant species. Adapted from (A) Greaves [6] and Axelrod et al. [5].

other as a unit [13]. In the 1950s, Odum et al. [14] popularized the
concept of ecosystems as interactive systems established between a
group of living creatures and their biotope (the nonliving compo-
nents of the environment). Although they may be bounded and in-
dividually discussed, ecosystems do not exist independently but
interact in a complex web of ecological relationships connecting all
ecosystems to make up the biosphere (earth as a whole). The emer-
gent properties of ecosystems are the consequence of the interactions
of a diverse mixture of different organisms with each other and with
their nonbiological environment. The organisms in ecosystems are
characterized by the numbers of each type of organism, their spatial
and temporal organization, and their interactions with each other
and with their physical and chemical environments [13,14]. Organ-

isms communicate with other similar and different kinds of organ-
isms. Communication and feedback between organisms may be
negative or positive [15]. Organisms compete for limited resources
and cooperate for mutual advantage. Ecosystems are dynamic. The
numbers and kinds of organisms may fluctuate with time. Predation
may reduce the number of some organisms and increase the number
of others. Organisms with low numbers may become extinct. Open
systems may change over time with immigration or emigration, and
closed systems may change as resources become limiting. Reproduc-
tion of organisms has consequences described by evolutionary con-
siderations of variation, inheritance, and selection over time [16-19].

The cancer and host cells in the tumor microenvironment interact
similarly to organisms in an ecological community. There are different
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kinds of cells within a tumor and its adjacent region, including tumor-
associated macrophages (TAMs), cancer-associated fibroblasts, myo-
epithelial cells, and other cells of the host stroma [20-27]. Cells
associated with the tumor may have characteristic spatial organiza-
tion, such as host-infiltrating macrophages and angiogenic endothe-
lial cells within the mass of cancer cells, or myoepithelial and stromal
cells external to the cancer mass. The spatial organization of the tu-
mor, i.e., tumor morphology, is influenced by selective pressure from
the microenvironment [28]. Communication between tumor cells
and between tumor and host cells occurs through direct physical in-
teractions and paracrine signaling [29-34]. Tumors, like classic eco-
systems, are dynamic, and the kinds of cells and the number of cells
change with time. For instance, an increase in the number of cells
with constitutively up-regulated aerobic glycolysis (Warburg effect)
[35]. In the evolutionary context, cancer cells and host cells accumu-
late mutations by selection or genetic drift [3,36-39]. Together, the
cancer cells and host cells, interacting within their habitat, create an
ecosystem. This ecosystem, in turn, exists within a larger environ-
ment or biosphere (the host patient).

Opportunities for Ecological Therapy for Cancer
The similarity of classic ecological systems and tumors suggests, by
analogy, that some features of ecological systems could be exploited
for cancer therapy. A species within an ecosystem can be destroyed by
directly killing the species itself, e.g., the extinction of the dodo bird
on Mauritius in the 16th and 17th centuries [40]. Within the para-
digm of contemporary cancer therapy, this is exemplified by chemo-
therapy and targeted agents [41-43]. In general, this is an inefficient
approach and, except for a few notable exceptions, has rarely resulted
in curative cancer treatment [44]. Within the context of darwinian
evolution, often the most efficient way to kill a species is to destroy
its niche by altering the environment. Ecological systems exist as a
network of dependencies. In a simple example, it is much easier to
drain a swamp than it is to individually swat all of the mosquitoes
living there. This approach, however, also kills all of the other species
living in the swamp. The challenge in patients with cancer is to iden-
tify nonessential elements of the environment that are promoting the
growth of the cancer cells and to eliminate them. These nonessential
elements may be host cells that may be attracted to the tumor site
and not normal components of that microenvironment or they may
be normal host cells that have been altered by their ongoing interac-
tions with the cancer cells. Another way to change the dynamic in-
teractions of the ecosystem is to alter the microenvironment in such a
way that is harmful to the cancer cells but does not cause long-term
detriment of the patient. For example, it has been long recognized
that heat is an important microenvironmental and epigenetic factor
in biological development [44,45]. In many tumor types, hyperther-
mia (41-43°C) increases and synergizes the therapeutic response to
radiation, cytotoxic drugs, and immunotherapy [44—46]. As noted
by Coffey et al. [44], hyperthermia has not been widely accepted be-
cause of limitations in clinical application and understanding. With
new types of thermal delivery systems, however, it is now possible to
more precisely target cancer cells with specific tumor cell hyperther-
mia and alter the local ecology of the tumor microenvironment to
enhance the effects of radiation and chemotherapy [44,47-49]. This
approach has been termed temperature-enhanced metastatic therapy
(R-H. Getzenberg, Johns Hopkins University). It should be noted
that ecosystems, by definition, are adaptive. In this instance, if the
cancer cells are not eliminated by thermally enhanced therapy, ther-
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motolerant subclones of cancer and host cells may be selected, and
the ecosystem will dynamically reorganize to a new state.

As noted, another way to alter the ecosystem is to kill other species
within the environment that are supporting the growth and survival
of the species of interest. One of the features of classic ecosystems is
the interdependence of different types of organisms on each other.
Some organisms may be dependent on others for survival, such as
parasitism to the benefit of one to the detriment of the other or com-
mensalism in which there is a benefit of one without harm to the
other. Another example of biological interaction between species is
mutualism or symbiosis, where both species benefit from interacting
with each other. The implications for cancer therapy for commensal-
ism and mutualism are that targeting noncancer cells, from which the
cancer cells are receiving benefit, should also reduce the number of
tumor cells. Examples of noncancer cells that cancer cells depend on/
receive benefit from include endothelial cells, cancer-associated fibro-

blasts, and TAMs.

Prostate Cancer Bone Metastasis as an Example of
a Tumor Ecosystem

Prostate cancer provides an example to apply the potential of eco-
logical therapy. In prostate cancer, cells metastasize to the bone by
parasitizing the hematopoietic stem cell niche [50,51]. We have pre-
viously described this process in a series of steps involving emigration
from the primary prostate tumor, migration through the lymphatics
and blood stream, immigration to the metastatic site, and natural-
ization of the bone marrow as the cancer cells establish themselves
and proliferate. We continue to hypothesize that the cancer cells
may cooperate with each other and with host cells to share resources
and provide each other with growth and survival factors to suc-
cessfully create a new ecosystem in the bone microenvironment
[5,15,50,51]. Prostate cancer cells in a bone metastasis ecosystem
are in close proximity, or contact, and communicate with multiple
kinds of host cells. Each group of cells of similar morphology and
function can be considered as a separate species (Figure 2).

These cells include hematopoietic stem cells, mesenchymal stem
cells, endothelial cells, pericytes, fibroblasts, macrophages, T and B
lymphocytes, dendritic cells, adipocytes, neurons, osteoclasts, osteo-
blasts, megakaryocytes, neutrophils, and eosinophils. All of these cell
species are interacting with the soluble and insoluble factors that
make up the nonliving components (biotope) of the bone microen-
vironment [14]. Insoluble factors include the collagen and pyrophos-
phate of the bone extracellular matrix. Soluble factors include those
supplied by host biosphere through the blood stream, e.g., oxygen,
nutrients, trace elements, and hormones, and those produced locally,
e.g., chemokines and cytokines. Although all of these components
are interacting in a dynamic fashion, the ecosystem paradigm pro-
vides a conceptual framework to understand these interactions and
defines therapeutic interventions based on them. For example, be-
cause many of these cells are providing the cancer cells with factors
that promote growth and survival, inhibiting their function will in
turn, inhibit cancer cell proliferation.

Using the Ecosystem Paradigm to Identify Possible
Therapies: The Case of Metastatic Prostate Cancer

Bone metastases from prostate cancer kill 28,000 men in the United
States each year [52]. Once prostate cancer cells travel to a bone mar-
row site and begin to naturalize, they create a tumor ecosystem that is
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Figure 2. The prostate cancer bone metastasis ecosystem. Pros-
tate cancer cells (C) in the bone metastasis ecosystem are in close
proximity and/or contact with a variety of cell types, each of which
can be considered a species based on their similarities in morphol-
ogy and function. These cell types include hematopoietic stem
cells (HS), mesenchymal stem cells (MS), endothelial cells (E),
pericytes (P), fibroblasts (F), macrophages (M), T lymphocytes
(T), B lymphocytes (B), dendritic cells (D), adipocytes (A), neurons
(N), osteoclasts (Oc), osteoblasts (Ob), megakaryocytes (Mk), neu-
trophils (Ne), and eosinophils (Eo). All of these cell species are in-
teracting with the soluble and insoluble factors that make up the
biotope of the bone microenvironment. Insoluble factors include
the collagen and pyrophosphate of the bone extracellular matrix.
Soluble factors include those supplied by host biosphere through
the blood stream, e.g., oxygen, trace elements, and hormones,
and those produced locally, e.g., chemokines and cytokines. The
lines connecting cell types suggest possible interactions.

fundamentally different from normal bone marrow. The interaction of
cancer cells with the bone microenvironment results in a vicious cycle
in which tumor cells cooperate with both host osteoclasts and osteo-
blasts to exacerbate bone destruction and increase cancer cell growth
[53-56]. Targeting the various elements of this vicious cycle provides
an example of ecological therapy (Table 1 and Figure 3). The normal
host cells that are participating in the tumor ecosystem of a bone
metastasis are functioning inappropriately. Therefore, they represent
viable targets for therapy that should not harm the normal bone mi-
croenvironment of the patient.

All cells within the bone tumor ecosystem, including the prostate
cancer cells, require a constant supply of nutrients from the blood
stream. A proliferating tumor mass requires new blood vessels to
sprout and proliferate (neoangiogenesis). In this setting, new blood
vessel growth is not required by the body, and therefore, neoangio-
genesis has been recognized as an ideal target for cancer therapy.
Strategies that block neoangiogenesis by inhibiting different targets
are in development. These include a current phase 3 trial of the com-
bination of the anti—vascular endothelial growth factor (VEGF) anti-
body bevacizumab with the chemotherapeutic agent docetaxel in
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men with advanced prostate cancer [57]. The interaction of VEGF
with its receptors can also be blocked with antibodies that bind to
the VEGF receptors or with kinase inhibitors, many of which are
in phase 2 trials [58,59]. Another strategy blocks the sprouting of
blood vessels into the extracellular matrix through inhibition of in-
tegrin binding, consequently, restricting tumor growth [60].

In bone metastases, bone metabolism has been deregulated, and
the cells that mediate bone turnover, osteoblast and osteoclasts, are
inappropriately turned on. This provides another ideal target for
therapy as there is very little bone remodeling in the normal adult.
Much attention, therefore, has been focused on interrupting the
osteoblast-osteoclast axis in bone metastases. Endothelin-1 is a me-
diator of growth and function for osteoblasts, and inhibition of its
receptor continues to be of major interest to the prostate cancer com-
munity [61,62]. Interleukin-6 (IL-6) is produced by osteoblasts and
serves as a potent survival cytokine for cancer cells and multiple host
cells. Interruption of IL-6 has been demonstrated to have profound
effects on the tumor ecosystem, including inhibiting osteoclast mat-
uration and function, enhancing chemotherapy efficacy, and decreas-
ing macrophage survival [63,64]. Osteoblasts and osteoclasts directly
communicate through the osteoprotegerin receptor—receptor acti-
vator of NF-kB ligand (RANKL) axis, which mediates maturation
of the osteoclasts [65]. This axis is inhibited by denosumab, a fully
human monoclonal antibody to RANKL. Osteoclast maturation and
function can also be inhibited by the bisphosphonates, which bind to
exposed bone matrix and directly poison the osteoclasts, by dasatinib,
a tyrosine kinase inhibitor that targets the src pathway, and by oda-
nacatib, a cathepsin K inhibitor that blocks enzyme degradation of
the bone [66-69]. The bisphosphonates are in widespread clinical
use as adjuncts to chemotherapy for advanced prostate cancer. Inter-
rupting the bone remodeling axis is an example of therapy that in-
hibits host cells that are providing essential factors to the tumor cells,
i.e., interrupting the ecologic network of dependencies.

While agents that inhibit endothelial cells, osteoblasts, and osteo-
clasts have all been put to clinical use, the bone metastasis ecosystem
paradigm identifies several new targets for cancer therapy. Trans-
forming growth factor beta (TGEP) is a powerful regulator of tu-
mor initiation, progression, and metastasis [70-73]. Transforming
growth factor beta mediates interactions between cancer cells and their

Table 1. Targeting the Noncancer Cell Species in the Prostate Cancer Metastasis Ecosystem with
Therapeutic Intent.

Cell Type Target Example Agents References
Endothelial cells VEGF Bevacizumab [57]
VEGEF receptor Sunitinib, sorafenib [58,59]
a, Integrins CNTO95, Vitaxin [60]
Osteoblasts Endothelin-1 Atrasentan, ZD-4054 [61,62]
IL-6 CNTO328 [63,64]
Osteoclasts RANKL Denosumab [65]
Maturation Bisphosphonates [66,67]
sre Dasatanib [68]
Cathepsin K Odanacatib [69]
Fibroblasts TGEB Lerdelimumab, SB431542  [70-73]
Mesenchymal progenitor cells Prostaglandins COX-2 inhibitors [76,77]
Hematopoietic progenitor cells ~ CXCL12 Sitagliptin, AMD3100 [79-82]
Annexin 1T Interferon gamma [83]
Eosinophils Eotaxin (CCL11)  Heparin, prednisolone [84,85]
Neutrophils CXCR1/CXCR2  Reparixin [86]
T cells CTLA-4 Ipilimumab [87,88]
Macrophages CCL2 CNTO888 [95,90]
CCR2 Adalimumab [97]
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Figure 3. Targeting the prostate cancer metastasis ecosystem for cancer therapy. The ecosystem of prostate cancer bone metastases
presents several targets for cancer therapy that are currently being studied in the preclinical and clinical settings. Agents to inhibit
osteoclast maturation and function (bisphosphonates) as well as endothelial cell proliferation (bevacizumab) are already in clinical
use. Agents that inhibit osteoblast function are in clinical trial. Agents that modulate the cells of the immune system hold promise
and are being studied preclinically as well as clinically. The recognition that cancer cells interact with mesenchymal and hematopoietic
stem cells has opened new avenues of investigation for the treatment of bone metastases.

microenvironment. For example, the loss of TGFp signaling in fibro-
blasts results in a protumorigenic microenvironment that supports
the transformation of adjacent epithelial cells [73]. The inhibition
of TGFp signaling is being explored with several small molecule
and antibody inhibitors [70]. Mesenchymal stem cells have been pro-
posed as the center of a bone metabolic unit that regulates bone ho-
meostasis and the bone microenvironment [74-77]. Mesenchymal
stem cells are a pluripotent cell type that can differentiate into adi-
pocytes, osteoblasts, and other cells and, therefore, play a major sup-
portive role in the prostate cancer metastasis ecosystem. Potential
methods to clinically inhibit mesenchymal stem cells are largely un-
explored. We propose, however, that prostaglandin inhibitors, e.g.,
COX-2 pathway, may be able to affect the function of these cells
within the context of tumors [74,75]. Hematopoietic stem or pro-
genitor cells (HSCs) are another major component of the bone tu-
mor microenvironment. The realization of the importance of the
HSC niche in the process of metastasis has been growing with the
discovery that metastasizing cancer cells use many of the same mech-
anisms and properties of HSCs to establish themselves in the bone
[51,78]. It seems that cancer cells and HSCs compete for similar
binding sites on osteoblasts [78]. Agents that act to mobilize HSC
and/or cancer cells out of the bone marrow microenvironment, or
prevent them from binding in the endosteal niche, may be valuable
additions to ecological therapy against bone metastases [79-83].
Another major component of the bone metastasis ecosystem con-
sists of cells of the immune system. Modulators of these cells, many
in development for inflammatory diseases, have been largely unex-
plored in cancer therapy. Eosinophils may be targeted by inhibiting
eotaxin through heparin analogs or steroids [84,85]. Neutrophil re-
cruitment may be inhibited by blocking CXCR1/CXCR2-mediated
chemotaxis [86]. FoxP3 (+) regulatory T cells (Tregs) are necessary
for control of deleterious immune responses [87]. Tregs have been
demonstrated to have antitumor activity through a variety of immu-
nomodulatory mechanisms. CTLA4 negatively regulates steady-state
Treg homeostasis, and inhibition of CTLA4 has been demonstrated

to have an anticancer activity by increasing the Treg presence and
function at tumor sites [87,88].

One of the best examples of cooperation among cell types within
the tumor microenvironment is the relationship between cancer cells
and TAMs [89-91]. Tumor-associated macrophages and cancer cells
cooperate with each other in the tumor ecosystem in a symbiotic re-
lationship that promotes the proliferation and growth of each other.
Tumor-associated macrophages are a rich source of growth factors,
e.g., VEGE promoting blood vessel growth to the tumor, and epider-
mal growth factor, promoting cancer cell proliferation [92-94]. In
turn, cancer cells provide soluble factors to promote survival of the
TAM:s, e.g., IL-6 and monocyte chemoattractant protein 1 (MCP-1,
CCL2) [95]. Because TAMs are not a part of the normal bone mi-
croenvironment, they can be treated as an invasive species to the eco-
system. We, and others, have demonstrated that inhibition of TAM
infiltration into the tumor microenvironment by blocking CCL2-
mediated chemoattraction is a potent suppressor of tumor growth
in preclinical models [95,96]. Interruption of this pathway is an area
of active clinical investigation [95-97].

Conclusion

Initially, an expanding population of cancer cells, whether they are
at the primary site or at a metastatic site, exists as an invasive species
of a particular organ ecosystem. As the cancer cells proliferate, they
become the dominant species and naturalize the environment to create
a tumor ecosystem that is not only based on the properties of the
tumor cells but also defined by the cell types and biotope of that
particular organ [3]. By recognizing that tumors have similarities
to classic ecosystems, we have extended the concept of the tumor mi-
croenvironment. The ecosystem framework reminds us that tumors
are dynamic evolving systems that involve not only the cancer cells
changing with time, but the host components as well. This strategy
suggests multitargeted therapeutic approaches based on defining the
unique elements of the ecological niche created by tumor-host inter-
actions. We have termed this strategy ecological therapy for cancer.
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